Math 22 Quiz 1 Version 1 Tue Jan 24, 2017		NAME YOU ASKED TO BE CALLED IN CLASS:					
SCORE:	_/35 POINTS -	6	GREATSHEE				
2. UNL	CALCULATORS OR ESS STATED OTHI W PROPER CALCU	ERWI	TES ALLOWED ISE, YOU MUST SIMP LEVEL WORK TO JU	LIFY A JSTIFY	LL ANSWERS YOUR ANSWERS		
Consider the fol	llowing statements.					SCORE	: 2 /2 PTS
	(i) $\{x\} \subseteq \{x, y, \{z\}\}$		(ii) $\{z\} \in \{x, y, \{z\}\}$		(iii) $\{z\} \subseteq \{x, y, \{z\}\}$		
Which of the sta	atements above are true?	Circle t	the correct answer below.	500 D 000			
[a]	none are true	[b]	only (i) is true	[c]	only (ii) is true	[d] (only (iii) is true
[e]	only (i) and (ii) are true	[f]	only (i) and (iii) are true	[g]	only (ii) and (iii) are true	[h] / ;	all are true
"There'	s an instructor for each cla	ss."	and the formal structure mention he variables. 2 for each	class	у,	SCORE;	<u>()</u> / 2 PTS
If $N = \{0, 1, 2, \text{how many element}\}$	nts are in the Cartesian pro	duct o	f(c,d,e,f,g,h,i,j,k), of L and N ? $= 99 element$	ıts		SCORE:	2 /2 PTS
Fill in the blanks	for the following <u>formal d</u>	efiniti	ons. Use proper mathematical	notation.		SCORE: _	/ 4 PTS
a] Given se	ts M and N , N is a su	bset of	M (or $N \subseteq M$) if and only	y if <u>eve</u>	0	Jis i	in N.
b] The Cart	esian product of sets M a	and N	is $M \times N = \cot \sigma$	scole rec	d pairs (x,y)	where	xisin M dyikin 1
stamping 16 m (1)				1			0

SCORE: /3 PTS

Determine if $p \oplus q \equiv \sim p \leftrightarrow q$. State your final answer clearly.

Write	the <u>formal definition</u> of a relation used in discrete math. Use correct English and mathematical notation. SCORE:/2 PTS
	Given two sets A,B. Their subset is in AxB. ARB IFF . R E AxB
-	off xEA, y, z & B and x Ry, x RZ then y = Z.
Classif	fy each statement as Universal Existential (<u>UE</u>), Existential Universal (<u>EU</u>) or Universal Conditional (<u>UC</u>). SCORE: // 2 POINTS
[a]	All calculus students have passed the same placement test. UE
[b]	Students who have parking stickers can park in lot C.
Consid	der the statement "if $\frac{1}{x} < 1$, then $x > 1$ ". (Assume x is a particular real number.) SCORE:/4 POINTS
[a]	Write a logically equivalent statement using "is necessary for". Do NOT use statement variables in your final answer.
	271 is necessary for $\frac{1}{2} < 1.1$
[b]	Write a logically equivalent statement using "unless". Do NOT use statement variables in your final answer.
	Unless & L 1, then or \ 1.
[c]	Write the contrapositive of the statement. Do NOT use statement variables in your final answer.
	If x & 1, then \frac{1}{x} 7, 1.
[d]	Write the negation of the statement. Do NOT use statement variables in your final answer.
	$\frac{1}{x}$ (1 and x (1., (1))
	nine if the following argument is valid. State your final answer clearly. S: This is NOT an essay question. Use the method shown in lecture and section 2.3. Do NOT use the Rules of Inference.
	If I save a lot of money, then I can quit my second job or I can buy a new car. I did not save a lot of money and I cannot quit my second job. Therefore, I cannot buy a new car.
	p q r ~p ~a ··· ~r ··
	TTTF PONG-PACQUE
	FTTFFF
	FFTTTFF
	TTFFFFFFF
	FFFFFFF
	TEFET
	FFFT TOFT
	The argument is invalid (()
	The argument is invalid (1)